

Software Exploitation Techniques

Gianni Tedesco <gxt@cs.nott.ac.uk>

"I can tell you I wish those people just would be quiet. It
would be best for the world. That's not going to happen,
so we have to work in the right fashion with these security
researchers."

-- Steve Balmer CTO/CEO Microsoft Corporation, 2003

You might learn:
 What sort of software errors are security relevant.
 The theory of stack based buffer overruns.
 The animated-cursor error in USER32.DLL

But I will not explain:
 How to write shellcodes
 Methods for ”getting away with it”

Introduction

Errors and ”Bugs”

 Practically all software has errors.
 Errors lead to program behaviour unanticipated

by the developers.
 Hard to say when errors can be used.
 Depends on all the little details.
 H4x0r d00ds have a little tool-bag of common

techniques though.

Smashing the Stack

 Discovered in 1972. Computer Security
Planning Study.

 Exploited in 1986. Morris worm.
 Published in phrack in 1994. Aleph one.

”Smashing the Stack for Fun and Profit.”
 Childs play these days!
 More complicated and obscure attacks exist

now.

How it works #1

 Parameters in parent
stack frame

 Locals in current stack
frame

 To return, a function
pops the return address
in to the instruction
pointer

How it Works #2

 ”Hello” fits in there no
problems!

How it Works #3

 Oh dear
 Whoever wrote this

string can overwrite the
return address

 They can manipulate
the control flow

 What value should they
overwrite RET with?

LoadCursorFromFile Vulnerability

 Vulnerability exists in windows XP and Vista.
 Was patched, but the patch didn't fix it.
 Eventually after bad ANI files were spreading

like the clap, a working patch was released.
 ANI is a type of riff file, like a WAV, AVI and

other windows formats.
 It's a pretty complicated format.
 LoadCursorFromFile in USER32.DLL doen't

validate it properly

Spot the Weakness

void ReadAniFile(char *file, size_t len)

{

struct riff_hdr *tmp;

struct ani_hdr hdr;

tmp = (struct riff_hdr *)file;

memcpy(&hdr, tmp, tmp->chunk_size);

/* Do some stuff */

}

Exploiting the Error

 If you can get someone to use an animated
cursor. You can take over the program that
loads it.

 I think the easiest way to do this is via Internet
Explorer.

 It's easy to get someone to click on a URL.
 We can design a web page that tells IE to load

our crafted cursor file whenever the mouse is
over our web page.

IE Memory Layout

 So we return to the problem of, what to
overwrite RET with...

 Let's look at IE memory layout after it has
loaded a cursor file.

Making an Evil Animated Cursor

 So, when the vulnerable function returns, the
whole ANI file is in memory.

 Let's just jump in to the ANI file and put some
machine code in there.

 Decided to put the evil machine code in to the
Copyright string section of the ANI.

Putting it All Together

Conclusions

 Errors like this are everywhere.
 There may be many kinds of exploitable errors

which are not even known about.
 Computers are far too complicated to be able to

say with certainty that they work as expected.
 Programmers first need to verify their design.
 Then they need to pay attention to every small

detail when implementing.
 Oh, almost forgot... Don't be naughty now! :)

Thanks For Listening

"If you do publish then, worst case, all that will be
accomplished is that you may cause a business
somewhere to be compromised, and they may turn to you
or your company for compensation for their financial
losses. In the best case, due to September 11, 2001, you
may end up on various government agencies' watch lists,
and your potential career in the computer business may
be altered in ways you did not intend."

-- Dan Grove. Hewlett Packard Software Security.

